ISSAT DE GABES

UNIVERSITE DE GABES

A.U.: 2020-2021

Série Nº 2

Exercice N°1. Soient $a \in \mathbb{R}$ et $\omega > 0$. On considère les fonctions suivantes définies sur \mathbb{R}_+ . Calculer la transformée de Laplace de la fonction f dans chacun des cas suivant.

1)
$$f(t) = e^{at}$$

$$f(t) = \cos(t)$$

$$3) \quad f(t) = \sin(t)$$

1)
$$f(t) = e^{at}$$
 2) $f(t) = \cos(t)$ 3) $f(t) = \sin(t)$
4) $f(t) = \sin(t - \frac{3\pi}{4})$ 5) $f(t) = e^{at}\sin(\omega t)$ 6) $f(t) = \cosh(t)\sin(\omega t)$
7) $f(t) = t$ 8) $f(t) = t^n$ 9) $f(t) = t\sin(t)$
10) $f(t) = \frac{\sin(t)}{2}$ 11) $f(t) = \int_{-\infty}^{t} \cos(x) dx$ 12) $f(x) = \int_{-\infty}^{x} e^{-t}\sin(x) dx$

5)
$$f(t) = e^{at} \sin(\omega t)$$

6)
$$f(t) = \operatorname{ch}(t)\sin(\omega t)$$

7)
$$f(t) = t$$

8)
$$f(t) = t^2$$

9)
$$f(t) = t\sin(t)$$

$$10) \quad f(t) = \frac{\sin(t)}{t}$$

$$11) \quad f(t) = \int_0^t \cos(x) dx$$

10)
$$f(t) = \frac{\sin(t)}{t}$$
 11) $f(t) = \int_0^t \cos(x) dx$ 12) $f(x) = \int_0^x e^{-t} \sin(x-t) dt$

Exercice N°2. Évaluer les intégrales suivantes en les considérant comme des valeurs particulières de transformées de Laplace.

$$I = \int_0^{+\infty} e^{-3x} \cos(x) dx$$

$$J = \int_0^{+\infty} e^{-5x} \operatorname{ch}(x) \sin(x) dx$$

Exercice N°3. Déterminer les originaux suivants.

1)
$$\mathcal{L}^{-1} \left[\frac{s+2}{(s+3)(s+4)} \right]$$

$$2) \mathcal{L}^{-1} \left[\frac{3}{(s+5)^2} \right]$$

3)
$$\mathcal{L}^{-1} \left[\frac{s-1}{s^2 + 2s + 5} \right]$$

4)
$$\mathcal{L}^{-1} \left[\frac{5}{(s+2)(s^2+2s+5)} \right]$$

$$5) \mathcal{L}^{-1} \left[\frac{e^{-2s}}{s+3} \right]$$

6)
$$\mathcal{L}^{-1}\left[\frac{s}{(s+1)^2}\right]$$

Exercice N°4.

1) Déterminer l'original de la fonction F définie par

$$\forall s > 1, \ F(s) = \frac{1}{s(s-1)(s^2+1)}$$

2) Résoudre, à l'aide de la transformée de Laplace, l'équation différentielle suivante

$$y''(t) - y'(t) = \sin(t), t > 0$$

avec
$$y(0) = y'(0) = 0$$
.

Exercice N°5. Résoudre à l'aide de la transformée de Laplace les équations différentielles suivantes.

1

1)
$$y'(t) + y(t) = t$$
, $t > 0$, avec $y(0) = 0$

2)
$$y''(t) + y(t) = 1$$
, $t > 0$, avec $y(0) = y'(0) = 0$

3)
$$y''(t) - 4y(t) = 3e^{-t} - t^2$$
, $t > 0$, avec $y(0) = 0$ et $y'(0) = 1$

4)
$$y''(t) + y(t) = e^t \cos(t)$$
, $t > 0$, avec $y(0) = y'(0) = 0$